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Abstract

Bray–Curtis similarity is widely employed in multivariate analysis of assemblage data, for sound biological reasons. This paper
discusses two problems, however, with its practical application: its behaviour is erratic (or even undefined) for the vanishingly
sparse samples that may be found as an end-point to a severe impact gradient, or a start-point in colonisation studies; and, in
common with all similarity measures on species-level data, it is sensitive to inconsistency of taxonomic identification through time.
It is shown that the latter problem is ameliorated by application of ‘taxonomic dissimilarity’ coefficients, a natural extension of the
concept of taxonomic distinctness indices. Two previous suggestions for use with presence/absence data, denoted here by Γ + and
Θ+, are noted to be simple generalisations of the Bray–Curtis and Kulczynski measures, respectively. Also seen is their ability to
permit ordinations of assemblages from wide geographic scales, with no species in common, and for which Bray–Curtis would
return zero similarity for all pairs of samples.

The primary problem addressed, however, is that of denuded or entirely blank samples. Where it can be convincingly argued
that impoverished samples are near-blank from the same cause, rather than by random occurrences from inadequate sample sizes
(tow length, core diameter, transect or quadrat size etc.), a simple adjustment to the form of the Bray–Curtis coefficient can
generate meaningful MDS displays which would otherwise collapse, and can improve values of the ANOSIM R statistic (increased
separation of groups in multivariate space). It is also shown to have no effect at all on the normal functioning of a Bray–Curtis
analysis when at least a modest amount of data is present for all samples.

Examination of the properties of this ‘zero-adjusted’ Bray–Curtis measure goes hand-in-hand with a wider discussion of the
efficacy of competing similarity, distance or dissimilarity coefficients (collectively: resemblance measures) in community ecology.
The inherent biological guidelines underlying the ‘Bray–Curtis family’ of measures (including Kulczynski, Sorenson, Ochiai and
Canberra dissimilarity) are made explicit. These and other commonly employed measures (e.g. Euclidean, Manhattan, Gower and
chi-squared distances) are calculated for several ‘classic’ data sets of impact events or gradients in space and time. Behaviour of
particular coefficients is judged against the interpretability of the resulting ordination plots and an objective measure of the ability
to discriminate between a priori defined hypotheses, representing impact conditions. A second-stage MDS plot of a set of
resemblance coefficients, based on the respective similarities of the multivariate patterns each generates (an MDS of MDS plots, in
effect), is seen to be useful in determining which coefficients are extracting essentially different information from the same
assemblage matrix. This suggests a mechanism for practical classification of the plethora of resemblance measures defined in the
⁎ Corresponding author. Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK. Tel.: +44 1752 633100; fax: +44 1752
633101.

E-mail address: krc@pml.ac.uk (K.R. Clarke).

0022-0981/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.jembe.2005.12.017



56 K.R. Clarke et al. / Journal of Experimental Marine Biology and Ecology 330 (2006) 55–80
literature. Similarity-based ANOSIM R statistics and Spearman ρ correlations, whose non-parametric structure make them
absolutely comparable across different resemblance measures, answer questions about whether the different information extracted
by some coefficients is more, or less, helpful to the final biological interpretation.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Guidelines underlying Bray–Curtis and related
resemblance measures

A widely used strategy for multivariate analysis of
community data (Clarke, 1993) computes between-
sample similarity or dissimilarity coefficients prior to
displaying sample patterns by non-metric multidimen-
sional scaling (MDS), and examining differences
between a priori defined groups by Analysis of
Similarity (ANOSIM) tests. Community data are here
regarded as any assemblage matrix, consisting of
counts, biomass, % cover etc. (yij), of each of a number
of taxa (i=1, 2,…,p) in a number of samples (j=1, 2,…,
n), and we have chosen to refer collectively to
dissimilarity, distance, similarity and ‘nearness’ coeffi-
cients as resemblance measures. Unlike some
approaches, e.g. Principal Components Analysis
(PCA) and Correspondence Analysis (CA), in which a
particular resemblance measure is forced on the
investigator (Euclidean and chi-squared distance, re-
spectively), the above strategy caters for any coefficient,
and Legendre and Legendre (1998) list about 50
possible choices! Nonetheless, the Bray–Curtis coeffi-
cient (Bray and Curtis, 1957), sometimes referred to as
the Steinhaus or Odum (1950) coefficient, has been very
widely employed by ecologists and environmental
scientists. Bray–Curtis dissimilarity between two sam-
ples [≡100− (Bray–Curtis similarity)] is defined as:

DB�C
12 ¼ 100d

P
i jyi1 � yi2jP
iðyi1 þ yi2Þ ð1Þ

It, and related coefficients (Kulczynski, Canberra
dissimilarity, a quantitative form of Ochiai, etc.—see
later for definitions), which we coin the ‘Bray–Curtis
family’, are implicitly motivated by the following
guidelines for a dissimilarity measure.

(i) Coincidence: the measure takes the value zero
only when the two samples are identical.
(ii) Complementarity: it takes its maximum value
(100 or 1, the former being used here) when two
samples have no species in common, irrespective
of the precise abundances.

(iii) Relative invariance: a simple scaling change (e.g.
recording biomass in g rather than mg) does not
affect the relative values of a set of resemblances.

(iv) Independence of joint absence: exclusion or
inclusion of taxa which are not present in either
sample does not affect the resemblance between
two samples.

(v) Localisation: the inclusion of an additional
sample in the analysis does not affect the
resemblance between existing samples.

(vi) Dependence on totals: the coefficient is able to
combine change in relative composition with
change in sample totals, where the latter carries
useful information.

The universal validity of these guidelines would
certainly not be accepted by all ecologists, in fact should
not be accepted by any ecologist in all circumstances: the
relevance of the guidelines will be context-dependent.
What the guidelines do, however, is to make explicit the
conditions under which Bray–Curtis dissimilarity, and
related measures, would be expected to capture the
important assemblage relationships. The extent to which,
in a specific context, these guidelines should bemodestly
relaxed, excised, replaced or even reversed, determines
the explicit or implicit coefficient choice.

While most resemblance measures satisfy the coin-
cidence axiom, complementarity is a strong constraint,
uniquely biological, which is not satisfied by many
coefficients. (Indeed, some have argued against using
dissimilarity measures at all, with their fixed upper limit
of 100, rather than a distance measure defined to +∞,
see Cao et al., 1997). Relative invariance is clearly
desirable for many types of community data (density,
biomass etc.) although it is not necessarily required for
coefficients based on (dimensionless) absolute count
data. Independence of joint absence is another strong
biological constraint (see below) which is failed by
many measures, and while it may seem axiomatic that
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the resemblance between two samples should depend
only on the data for those samples, a number of
coefficients do not obey localisation because they
depend on some form of standardisation for each
taxon by the total or maximum across all samples.
Similarly, some measures automatically standardise
only to relative composition of each species and
therefore do not obey the dependence on totals
condition. To ignore major differences in total content
of each sample tends to be undesirable in environmental
monitoring and some ecological work, except in cases
where sample quantification (quadrat area, water
volume, transect length, etc.) is poorly controlled. In
more fundamental biological contexts (e.g. gut contents
in diet studies), relative composition is usually prefer-
able, but the point being made by this guideline is that
the choice of whether to remove differences in sample
totals should be in the hands of the experimenter, not
dictated by, for example, an implicit distance measure
underlying an ordination (as in CA).

Returning to (iv), independence of joint absence is an
important and distinctive property whose strength in an
ecological context is clear: species can be absent for
many different reasons in different samples, and it is
biologically unwise to infer that two samples are similar
because neither contains a particular species. In other
words, zero plays a special role in assemblage matrices
— it can be misleading to treat it in the same way as any
other number. To paraphrase Field et al. (1982): it is
wrong to suggest that deep sea samples and brackish-
water estuarine samples are similar because neither
contains species found only in coastal waters. Also,
extremes of spatial clustering of organisms, and low
sampling volumes, often lead to replicates from entirely
different groups (treatments/times/sites) having no
representatives of particular species (or no species at
all), and it would again be unwise to infer similarity
between such samples on the strength of this. That being
said, there are situations where a sample containing no
organisms at all is ecologically interpretable, and
dealing with such data is one of the main motivations
for this paper.

1.2. Two problems with the Bray–Curtis coefficient

In spite of its general appeal, arising from the
widespread validity of the above guidelines, one of the
practical problems that can arise with the Bray–Curtis
coefficient is its increasingly erratic behaviour as values
within samples become vanishingly sparse. For exam-
ple, when two samples consist only of a single
individual their similarity varies between zero (the
individuals are from different species) to 100 (they are
from the same species). Ultimately, when both samples
contain no individuals at all the Bray–Curtis coefficient
is undefined, since the numerator and denominator of
Eq. (1) are both zero and their ratio is indeterminate.
This difficulty is an inevitable consequence of the
axioms listed earlier, and the indeterminism will be
shared by any resemblance measure which satisfies the
independence of joint absence property. There are
cases, however, where more knowledge about potential
causes of sparse samples is available than is represented
in the data matrix alone. For example, the samples
could represent a series of increasingly impacted
communities, from a common stressor, heading towards
an end-point in which samples are entirely defaunated,
or an experiment might start with complete clearance of
the flora from replicate rock patches to examine the
recolonisation process. In both cases, sufficient knowl-
edge of the data structure is available to be able to say
that two samples are entirely empty from the same
cause. In these circumstances one would want to
modify the dissimilarity measure so as to force it to
return the value 0, rather than remain undefined.
Similarly, two samples which are not empty, but nearly
so, could be considered similar even if the handful of
individuals they contain are from different species. For
such situations, what is required (and provided later) is
a modification to the definition of similarity to cope
with these extreme cases, without losing the normal
functioning of a coefficient such as Bray–Curtis, and its
adherence to the earlier guidelines, when dealing with
samples which are not denuded.

A different practical problem arises when species-
level identifications are inconsistent between locations
or through time. All standard similarity measures must
be sensitive to such errors, if they are widespread
through the species list, and occur for fixed points in
time or certain spatial groups. What looks like an abrupt
assemblage change at one time could simply result from
improved identification skills (or taxonomic redefini-
tion) as original taxa ‘disappear’ and are replaced by one
or more ‘new’ taxa. Usually, however, this involves taxa
which are closely related, e.g. a single species is now
identified as two separate species within the same genus,
and exploiting taxonomic relatedness of the species
could bestow a degree of robustness of the analysis to
such changes. The ideal, of course, is to reduce all
samples to the lowest common denominator of consis-
tent taxonomy but, where this is problematic, a
presence/absence measure based on ‘taxonomic dissim-
ilarity’, using the mean path length through the
taxonomic hierarchy from a species in sample 1 to its
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nearest relation in sample 2, could achieve that
robustness. Instead of similarity between two samples
coming only from taxa that match at the species level,
contributions can now come from ‘near misses’ (e.g. a
different species but in the same genus).

2. Methods

2.1. Definitions of taxonomic dissimilarity

Two such presence/absence based ‘beta-diversity’
coefficients were defined by Clarke and Warwick
(1998a) and Izsak and Price (2001). These are a natural
extension of the ‘alpha-diversity’ index of taxonomic
distinctness, Δ+ (Warwick and Clarke, 1995; Clarke
and Warwick, 1998b), namely the average path length
through a taxonomic (or phylogenetic/genetic) tree
between every pair of species in a sample. The path
length between species i and j is denoted by ωij, where
for a standard Linnean classification the steps from
species to genus, genus to family, etc. are regarded as
equal, and the largest path length (e.g. between species
in different phyla) is fixed at 100. The path length ωii

between identical species is defined to be zero. In a
unified notation, taxonomic dissimilarity between
sample 1 (species subscripts i) and sample 2 (species
subscripts j) is then formally defined in one of two
ways:

Cþ ¼ 100d
X

i
min
j
ðxijÞ þ

X
j
min
i
ðxjiÞ

� �
=ðs1 þ s2Þ

ð2Þ

Hþ ¼ 100d
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2
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j
ðxijÞ

s1
þ
X

j
min
i
ðxjiÞ

s2

0
@

1
A ð3Þ

where s1, s2 are the number of observed species in
samples 1 and 2. In words, Γ+ (gamma+) is the mean
of all path lengths between each species in one sample
and its closest relation in the other sample, whereas
Θ+ (theta+) separately calculates the mean path length
between all species in sample 1 and their nearest
relations in sample 2, and vice versa, and then
averages the two means. Clearly, if s1= s2 then
Γ + =Θ+. Note that Γ + is essentially the ‘TD
coefficient’ of Izsak and Price (2001) and Θ+ the
‘optimal mapping coefficient’ of Clarke and Warwick
(1998a). The novel observation offered here is that it
is not difficult to show algebraically that Γ + and Θ+

reduce exactly to the presence/absence forms of the
Bray–Curtis and Kulczynski coefficients, respectively,
(see the later Eqs. (8) and (15)) when the taxonomic
hierarchy is completely flattened, so that all species
are in (say) the same genus. The distance to the
nearest relation is then either 0 or 100 (the species is,
or is not, found in the other sample). Γ + and Θ+ are
thus natural generalisations, to a hierarchy of related-
ness, of these two measures in the ‘Bray–Curtis
family’ (Kulczynski replaces the arithmetic mean of
the sample totals in the denominator of Eq. (1) with a
harmonic mean, so can be considered a variant of
Bray–Curtis).

The likely merit of this generalisation in terms of
added robustness to certain types of taxonomic errors
has already been noted, but an additional advantage
is that two samples with no species in common, and
thus with Bray–Curtis dissimilarity of 100%, can
now take a range of dissimilarities b100. If two
samples tend to have species in similar genera or
families to each other then taxonomic dissimilarity is
low, whilst if they do not share many evolutionary
branches the dissimilarity will remain large. It is now
therefore possible to generate meaningful MDS plots
and cluster analyses of assemblages from samples
over a wide geographic scale, perhaps with no
species in common at all; an example is given later.
(This is not the place for a discussion on the
shortcomings of Linnean taxonomies in representing
phylogenies, but note that nothing in the formulation
of Γ +, Θ+ or Δ+ limits their use to taxonomic rather
than phylogenetic or genetic trees—or even func-
tional hierarchies!)

2.2. Definition of zero-adjusted Bray–Curtis

Turning now to the primary problem addressed by
this paper, of denuded samples, the requirement is to
modify the behaviour of the Bray–Curtis coefficient so
that it is less erratic for samples with few individuals,
and is defined for samples with complete absences. The
solution is ad hoc, but simple, and rather analogous to
that for use of the log(1+ x) transformation in
univariate statistics: log(x) is undefined as x tends to
zero, hence one can ‘feather in’ its behaviour for small
x by adding a constant before taking the log. Here, the
solution is also to add a constant (to the denominator of
the Bray–Curtis coefficient) though a more helpful way
of thinking of this is as adding a ‘dummy species’ to
the original abundance matrix, with value 1 for all
samples. The effect of this extra species, on the
dissimilarity between, say, samples 1 and 2 (Eq. (1)), is
clearly to make no difference to the numerator (adding
a term of |1−1|) and to increase the denominator by 2
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(adding a term of (1+1)). The zero-adjusted Bray–
Curtis coefficient is therefore:

DB�Cadj
12 ¼ 100d

X
i
jyi1 � yi2j

2þ
X

i
ðyi1 þ yi2Þ

: ð4Þ

The dummy species gives the desired value of D for two
samples which are empty: they now have a single
‘species’ in common, with the same abundance, which
gives a dissimilarity of zero. In fact, since for assemblage
data all the y's are content variables which can never be
negative, the denominator of Eq. (4) is always strictly
positive, so D is always defined. Furthermore, for two
samples which are very sparse, the dummy species gives
them a certain amount of similarity; they share a
(dummy) species, even if they have no real species in
common. This is what was required: the dissimilarity
between two samples tends smoothly to zero as the
samples become vanishingly sparse.

There is a good reason for defining the dummy
species value to be 1. Prior to calculating inter-sample
resemblances, transformations are commonly employed
(Clarke and Green, 1988) to downweight the contribu-
tions of the dominant species in relation to the less
common and rarer ones. For a dummy species value of 1
and a transformation chosen from the usual sequence of
power transforms of increasing severity (none, square
root, fourth root, reduction to presence/absence) it
makes no difference to the DB–Cadj coefficient in Eq. (4)
whether the transform is performed after the addition of
the dummy species or before. Clearly, a power
transform of the value 1 always returns the value 1,
so the constant 2 is always added to the denominator
of Eq. (4). In fact, the logarithmic transform can also
be embedded in this sequence, if one uses the form
log2(1+y) rather than logs to the base e or base 10;
Table 1
Hypothetical data matrix of 4 species by 12 samples, with decreasingly spar
dissimilarities, calculated for adjacent samples, contrasted with the zero-adju

Samp1 Samp2 Samp3 Samp4 Samp5 Sam

Species 1 0 0 1 1 0 1
Species 2 0 0 0 0 1 0
Species 3 0 0 0 0 0 1
Species 4 0 0 0 0 0 0
(Dummy species 1 1 1 1 1 1

1 v 2 2 v 3 3 v 4 4 v 5 5 v 6

B–C dissimilarity ? 100 0 100 100
Zero-adjusted B–C 0 33.3 0 50 60

The latter can be thought of as simply calculating Bray–Curtis with an adde
again the dummy value of 1 is unchanged by this
transformation because log2(1+1)=1.

When working with abundances which are integer
counts, a dummy value of 1 is also a natural choice: it is
the smallest, strictly positive number that the matrix
could contain. For other content variables (biomass, %
cover etc.), the natural choice is similarly to take the
dummy species value as the smallest non-zero number
in the table (the analogy is very close with common
practice in univariate statistics, for the choice of c in the
log(c+x) transformation, for non-integral x). Clearly, the
larger the dummy value, the greater the risk of a
dampening effect on dissimilarities between samples
which are not particularly sparse. A dummy value which
is too small, however, risks total irrelevance. It will
always force two empty samples to be 100% similar, but
near-empty samples which have their content in
different species will still be deemed highly dissimilar,
thus failing to moderate the erratic behaviour of Bray–
Curtis for near-denuded samples. A judicious compro-
mise is required here.

2.3. Example comparison of zero-adjusted Bray–Curtis
with the unadjusted measure

It is apparent from the form of Eq. (4) that only a
slight difference is possible between the zero-adjusted
measure, with a dummy value of 1, and the original
Bray–Curtis dissimilarities, for samples of counts which
contain at least a modest number of individuals. The
dummy species has the same abundance in all samples
and therefore its contribution to the relative dissimilarity
among samples can only be marginal, and indirect
(through changing the sample totals). The magnitude of
the effect can be seen for a small, hypothetical data set
(Table 1), representing a colonisation process for
independent quadrats, examined at a series of 12
se abundances, showing the difference between the usual Bray–Curtis
sted Bray–Curtis coefficient

p6 Samp7 Samp8 Samp9 Samp10 Samp11 Samp12

0 0 10 10 0 0
0 5 0 20 0 50
0 5 0 20 0 50
2 0 10 0 50 100
1 1 1 1 1 1)

6 v 7 7 v 8 8 v 9 9 v 10 10 v 11 11 v 12

100 100 100 71.4 100 60
66.7 85.7 93.8 69.4 98.0 59.5

d row—the displayed ‘dummy’ species.
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1, representing a colonisation process, based on: a) standard Bray–
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samples 1 and 2 are coincident, as are samples 3 and 4). Stress values:
a) 0.02, b) 0.08.
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times, involving only 4 species. The sparseness
generally reduces from left to right, though there is
other structure present. Samples 8 and 9, for example,
have reasonable numbers of organisms but of complete-
ly different species. For standard Bray–Curtis dissim-
ilarities between adjacent pairs of samples, the
dissimilarity is initially undefined (between blank
samples) and is then unstable (0 between samples 3
and 4, but 100 between 4 and 5, 5 and 6 etc.). This does
not reflect the biological reality. If these are all sparse
samples at the beginning of a colonisation from a
common, abiotic starting point, they should not be
defined as 100% dissimilar. The behaviour of the zero-
adjusted Bray–Curtis dissimilarity looks much more
appropriate, as blank samples have a dissimilarity of 0,
highly sparse samples tend to have low dissimilarity to
each other even when their species do not match, and the
adjustment makes very little difference when samples
contain reasonable numbers of individuals (e.g. dissim-
ilarities between 10 and 11, and between 11 and 12).

This preferable behaviour is also reflected in non-
metric multidimensional scaling (MDS) ordination plots
(Fig. 1) based on inter-sample resemblances. Note that
in this paper we follow the terminology of Clarke
(1993), and Clarke and Warwick (2001), in referring to
non-metric multidimensional scaling as MDS, accepting
that other forms of multidimensional scaling also exist
(such as classical scaling, i.e. metric MDS). For the
standard Bray–Curtis plot (Fig. 1a) samples 1 and 2
need to be omitted: their dissimilarity to everything else
is 100, so they will collapse the non-metric MDS plot,
even if this is able to tolerate an undefined dissimilarity
between them (as some MDS routines are able to do).
Such condensed MDS plots are a common occurrence
where one or two samples have high dissimilarity to all
others, and are inevitable with non-metric MDS if the
dissimilarities involving such outliers are all larger than
any dissimilarities among the remainder of the samples
(the precise positions of the outliers are then essentially
arbitrary because all the rank order relationships in the
dissimilarity matrix can be satisfied by putting them
anywhere ‘sufficiently far away’). The display of the
remaining samples, 3 to 12, fails to capture the salient
features of the original matrix clearly. This is in sharp
contrast with the MDS plot from the zero-adjusted
Bray–Curtis dissimilarities (Fig. 1b) which retains
samples 1 and 2, and clearly displays the colonisation
process (right to left) without sacrificing the other
sample structure orthogonal to this (e.g. the complete
dissimilarity of samples 8 and 9).

The effect of the added constant on the bottom line
of Eq. (4) is to make the zero-adjusted coefficient
slightly smaller, in absolute value, than its Bray–Curtis
counterpart. It is clear (Table 1) that the adjustment to
Bray–Curtis only makes major changes for the sparsest
of samples. Once numbers in two samples reach a
reasonable level, differences in the absolute value of the
dissimilarity between them become small, and their
relative values (and rank order) are effectively the same.
It is algebraically straightforward to quantify this effect
precisely. The percentage reduction in Bray–Curtis
dissimilarity D12, consequent on the zero-adjustment, is
200 / [T1+T2+2], where T1 and T2 are the totals for
samples 1 and 2 (∑iyi1 and ∑iyi2, respectively). If the
total abundance of both samples, T1+T2, is 100 then the
reduction in D is b2%. Large reductions are clearly only
possible when T1+T2 tends to zero. As the relative
values of dissimilarity tend to matter more than their
absolute values one can repeat the same calculation
for (D12−D34), namely the difference between the
Bray–Curtis dissimilarities for samples 1 and 2 and
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for samples 3 and 4. The percentage reduction in this
difference, on making the zero-adjustment, is more
algebraically complex, but in the special case where
the totals for samples 1 and 2, T1+T2, and the totals
for samples 3 and 4, T3+T4, are identical, the
percentage reduction is again 200 / [T1+T2+2], namely
b2% if T1+T2=T3+T4=100.

2.4. Computations

All resemblance calculations and ordination plots
in this paper were carried out with the PRIMER
package, version 6 (Clarke and Gorley, 2006); plots
were additionally annotated with presentation graphics
software.

3. Results

3.1. Taxonomic dissimilarity analyses

Returning to the taxonomic dissimilarity measure
Γ +, two examples are now given of its practical
usefulness. Fig. 2 displays the MDS ordination plots
from soft-sediment benthic macrofaunal assemblages in
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Fig. 2. MDS ordination for two years of macrobenthic assemblages
from 5 distances along 4 perpendicular transects away from the Valhall
oilfield, based only on species lists and a) standard Bray–Curtis, b)
taxonomic dissimilarity Γ +. Stress values: a) 0.05, b) 0.11.
20 sediment cores taken at different distances (in a
cross-shaped design) from a centre of oil-drilling
activity, in the Valhall oilfield of the Norwegian sector
of the North Sea (data discussed by Olsgard et al.,
1997). Symbols of increasing size represent distances of
samples from the oilfield centre, 500 m to 6 km.
Displayed on each plot are community data from two
years, 1988 and 1991, both taken some time after
routine operation of the field commenced. Fig. 2a uses
standard Bray–Curtis on presence/absence data (also
known as Sørenson, see the later Eq. (8)), whereas 2b
calculates the taxonomic dissimilarity Γ+(Eq. (2)); plots
for Θ+ are similar. Whilst there is a clear suggestion of
changing assemblage structure with distance from the
oilfield, the dominant feature in Fig. 2a is of a time
change between 1988 and 1991. This is purely
artefactual, however, there being almost a doubling in
the number of different species identified between the
1988 and 1991 lists; this does not represent a recovery
process but a known increase in expertise in identifica-
tion skills over that period. The use of taxonomic
dissimilarity in Fig. 2b mitigates this artefact to a large
degree (though it cannot remove it altogether), since
much of the increase in the species list is almost
certainly due to ‘splitting’ of formerly identified single
species into two or more from within the same genus.
The comparative pattern of community differences as
the oilfield is approached in the two years is now more
evident, and shows relatively little time change, both in
the differences between distance groups and the overall
scale of assemblage change with distance.

Fig. 3 represents a more artificially constructed data-
set designed to illustrate the behaviour of taxonomic
dissimilarity in a case where a Bray–Curtis analysis
cannot be carried out. Real data of species lists, of all
fish recorded by FishBase (www.fishbase.org) as
present in a cross-section of world island groups (see
Fig. 3), are pruned to remove any species which occur
at more than one of these locations. By definition, the
resulting (pseudo-)endemic species matrix has Bray–
Curtis dissimilarity of 100 for all pairs of islands, and
an ordination is impossible. Taxonomic dissimilarities
are perfectly well-defined, however, and an interpret-
able MDS plot results, displaying some natural
juxtapositions of islands on this wide biogeographic
scale (Fig. 3).

3.2. Zero-adjusted Bray–Curtis analyses

The remainder of this paper is centred around its
main topic of adjustment to the quantitative Bray–Curtis
coefficient (Eq. (1)) to deal with denuded samples (Eq.
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(4)). A series of real data sets are used, the first three
studies containing vanishingly sparse data for some sites
or times, and they consist of a spatial defaunation
gradient, a study of a naturally sparse assemblage and a
time series of impact and recovery. Two further studies
demonstrate that the adjustment in no way disrupts the
normal behaviour of Bray–Curtis analyses in impact
gradient studies which are either species rich throughout
the gradient, or which are species-poor close to the main
impact but still with high numbers of individuals of
opportunist species. To place the performance of the
adjusted coefficient in context, further standard resem-
blance measures are gradually introduced, related to the
guidelines of the Introduction, and their practical
performance examined.

Example 1. Boulby macrofauna, England

These data, from samples taken in September 1992,
were collected as part of a long-term monitoring
programme, designed to detect effects of mining effluent
discharged into coastal waters from a potash mine at
Boulby, East Cleveland (Brown and Shillabeer, 1997;
Craig et al., 1993). Dense, saline effluent containing non-
toxic clays is discharged through outfalls and the effect
on the benthic community is primarily physical smoth-
ering. These data illustrate the behaviour of the Bray–
Curtis adjustment in a realistic context, where the nature
of the impact is to defaunate areas of the seabed.

Five sites are considered, with three replicates at
three of the sites, giving a matrix of 49 species by 11
samples. Sites 33, 231 and 147 represent high levels of
impact resulting in highly sparse assemblages. Sites 56
and 83 are relatively much less impacted (site 83 having
a larger number of individuals, and a somewhat different
species mix, than site 56). Fig. 4 contrasts the MDS
ordinations based on square-root transformed data,
using the Bray–Curtis measure (Fig. 4a) and its zero-
adjusted form (Fig. 4b). For standard Bray–Curtis, the
erratic behaviour for the highly sparse sites 231, 33 and
147 dominates the plot; they are not represented as
similar to each other, with 147 and 231 appearing on
‘opposite sides’ of the two relatively less-impacted sites,
56 and 83. The real distinction between these latter two
sites is completely lost. For the zero-adjusted form,
however, the distinction between the impacted (right)
and less-impacted sites (left) is the dominant feature,
and the distinction between sites 56 and 83 (in relation
to their replicate variability) is maintained.

Example 2. Boulder-field fauna, Australia

These data describe mobile macrofauna on the
undersurfaces of similar-sized boulders, sampled from
a boulder field in NSW, Australia, with 25 replicate
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boulders being examined at each of 4 sites. A total of 39
separate taxa were identified, but counts of any one
taxon were small throughout and no transformation of
the data was applied prior to the following analyses. The
data are sparse, as is natural for this fauna (Chapman,
2002), particularly for sites 3 and 4, and six of the
boulders (three from each of sites 3 and 4) had no
attached organisms at all.

For a standard Bray–Curtis analysis empty samples
must be removed altogether. The resulting MDS
ordination (Fig. 5a) collapses into one main group and
a single outlier from site 3, which is almost empty,
containing only two individuals (in different species). If
this sample, too, is removed, a better MDS plot results
(Fig. 5b). In some cases (arguably here also) it is
necessary to go through several such removals of
denuded outliers before a stable structure emerges,
based on samples with reasonable total counts.

For the zero-adjusted Bray–Curtis measure (Fig. 5c)
it is not necessary to remove the single outlier from site
3, or even the six blank samples from sites 3 and 4, as
they now have low dissimilarity with other
impoverished samples. This MDS plot also appears to
show a better separation of the sites than Fig. 5b. This
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can be more formally assessed by the ANOSIM R
statistic (Clarke and Green, 1988; Clarke, 1993). This
statistic is the difference between the average rank
dissimilarities among groups and within groups, divided
by a constant that ensures that R is always ≤1. R=0
when there are no group differences and R=1 when all
samples in different groups are more dissimilar to each
other than any samples in the same group. The
usefulness of this rank-based formulation here is that
the absolute values of R are comparable, as measures of
group separation, from analyses based on entirely
different dissimilarity coefficients.

A 1-way ANOSIM permutation test using the
standard Bray–Curtis coefficient (having removed the
all-blank samples) shows that sites are significantly
different (first column of Table 2). All the pairwise
comparisons given in the remaining columns of Table 2
are also clearly significant, although it might be
considered that the test for sites 3 and 4 is borderline.
Significance is of less interest here than the absolute
values of R, which show that in every case (bar one, with
no change) the zero-adjusted coefficient (without
removals) improves the separation of the sites compared
to the standard coefficient.
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Table 2
Boulder-field mobile macrofauna, at 4 sites in NSW, Australia: ANOSIM R statistic for testing for differences between all sites (first column) and
pairwise comparisons of sites (subsequent columns), with significance level from 999 permutations given in brackets (this can never be smaller than
0.1%)

Global R R for 1 v 2 R for 1 v 3 R for 1 v 4 R for 2 v 3 R for 2 v 4 R for 3 v 4

Bray–Curtis 0.41 (0.1%) 0.12 (0.3%) 0.59 (0.1%) 0.75 (0.1%) 0.45 (0.1%) 0.46 (0.1%) 0.06 (2.6%)
Zero-adj B–C 0.51 (0.1%) 0.12 (0.3%) 0.84 (0.1%) 0.82 (0.1%) 0.69 (0.1%) 0.52 (0.1%) 0.12 (0.5%)
Kulczynski 0.39 (0.1%) 0.11 (0.4%) 0.59 (0.1%) 0.75 (0.1%) 0.42 (0.1%) 0.40 (0.1%) 0.05 (4.4%)
Euclidean 0.22 (0.1%) 0.08 (0.8%) 0.44 (0.1%) 0.41 (0.1%) 0.24 (0.1%) 0.17 (0.1%) 0.04 (4.7%)

Rows are four different dissimilarity measures; the best site separations (largest R) are consistently achieved by the zero-adjusted Bray–Curtis
coefficient, shown in bold.
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Some of the improvements are quite dramatic, for
example the 1 v 3 and 2 v 3 comparisons. Of course,
there is a relationship between power and the number of
replicates used for a test (Somerfield et al., 2002), so
minor improvements in significance levels could result
from the increased number of replicates used in the zero-
adjusted case, but the improvements here are in the
values of R, which are not, in general, related to the
number of replicates. Instead, R reflects the true size of
location shifts in communities between the sites. The R
values in Table 2, and the comparison of Fig. 5c with b,
both demonstrate the improvement in behaviour of the
modified coefficient.

To widen the comparison, Kulczynski's (1928)
measure is added to Table 2. This obeys all the
guidelines in the Introduction and can thus be
considered to be in the ‘Bray–Curtis family’. It was
identified by Faith et al. (1987) as their best-performing
coefficient, marginally preferable to Bray–Curtis, in a
comparative study which attempted to recreate a
simulated 2-d ecological gradient on a rectangular
grid. The coefficient is defined as:

DKul
12 ¼ 100 1�

X
i
minfyi1; yi2g

HM
X

i
yi1;
X

i
yi2

� �
0
@

1
A ð5Þ

where HM(T1,T2)=2 / [(1 /T1)+ (1 /T2)] is the harmonic
mean of T1 and T2. In fact, although not immediately
obvious, Kulczynski is algebraically the same as the
Bray–Curtis coefficient (Eq. (1)) except that the simple
arithmetic mean (T1+T2) / 2 in the denominator of Eq.
(1) is replaced by a harmonic mean in Eq. (5). If the
totals for samples 1 and 2 are the same, the two
coefficients are therefore identical, and in practice one
would expect them to give different analysis patterns
only if the sample totals (post-transformation) were
rather variable, with some of them relatively close to
zero. As a variation on Bray–Curtis, it too is undefined
for all-blank samples and the 6 such replicates have been
removed for the calculations. The resulting MDS plot is
not shown but is very similar to Fig. 5b upon removal of
the same site 3 outlier, and the ANOSIM tests return R
values (Table 2) which are very close to those for
standard Bray–Curtis, and inferior to those for the
Bray–Curtis adjustment. The Kulczynski coefficient,
sometimes advocated as an alternative to Bray–Curtis,
is therefore seen to have equally erratic behaviour for
sparse samples.

The use of the zero-adjusted form in Eq. (4) implies,
of course, that some of the ‘Bray–Curtis family’
guidelines of the Introduction are contravened. As
noted previously, no coefficient which strictly obeys the
independence of joint absence property can return a
defined value for the dissimilarity between two all-blank
samples. If this guideline is to be broken, why not, it
might be asked, move to another commonly used
coefficient that does not obey independence of joint
absence? An example would be Euclidean distance:

DEuc
12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
ðyi1 � yi2Þ2

q
ð6Þ

which is the distance measure implicit in many
commonly applied multivariate methods, such as
Principal Components Analysis (PCA, Krzanowski
and Marriott, 1994). In fact, there are good reasons for
not doing so in assemblage studies involving many
species, most of which are absent in some of the
samples. If patterns of species presence/absence are then
at least as important to interpretation as quantification of
species which are present, then Euclidean and other
simple distance measures, such as Manhattan, Min-
kowski etc., invariably perform badly (zero plays no
special role and is treated in the same way as any other
number). Most of the guidelines of the Introduction are
not marginally contravened, as is the case for the Bray–
Curtis adjustment, but are not fulfilled at all. The point is
that these are not a motivating set of guidelines for
simple distance-based measures: Euclidean distance
breaks complementarity and independence of joint
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absence in a major way, with important practical
consequences. The issue is returned to later, but note
for now that an MDS based on Euclidean distance
shows a radically different picture of these data (Fig.
5d). It is dominated almost completely by the widely
differing sample totals, rather than any presence or
absence structure. It is also much less successful in
separating the groups. Sites 1 and (particularly) 2 have
high variability, whereas replicates from sites 3 and 4
collapse on each other as a consequence of the latter's
generally smaller total abundances across all species.
This is in stark contrast with both kinds of Bray–Curtis
plots, in which the variability is of a similar magnitude
across sites. The lesser ability to separate the groups
with the Euclidean distance-based analysis is indicated
by much lower values for ANOSIM R (Table 2),
although even inconsequential differences are still
significant due to the high power resulting from 25
replicates in each site group.

Example 3. Coral communities, Indonesia

In a study from Tikus Island, Thousand Islands,
Indonesia (Warwick et al., 1990), coral assemblages
were quantified in terms of % cover along 10 replicate
30 m line transects in each of the years 1981, 1983,
1984, 1985, 1987 and 1988. A total of 75 different
species were observed. Significant changes were
expected following the 1982–3 El Niño, and Fig. 6a
demonstrates this for the standard Bray–Curtis coeffi-
cient, calculated on square-root transformed data. In
fact, as is shown later, the transformation makes little
difference to the outcome but, under the approach of
Clarke and Warwick (2001), a mild transform is called
for since one species of Heliopora in particular accounts
for up to 40% of the cover for a few of the transects, and
would tend to be given a rather dominant weight in an
untransformed analysis. The plot shows a strong shift in
the assemblage between 1981 and 1983 with subsequent
years falling intermediately, suggesting some degree of
recovery from the El Niño event. Also there is
apparently increased variability among replicates in
1983 compared to other years. In contrast, for the MDS
plot based on the zero-adjusted Bray–Curtis coefficient
(Fig. 6b) the location shift is, if anything, clearer still,
and the multivariate dispersion is seen to be more
equitable across the years.

As was the case for the boulder-field example above,
a Euclidean distance plot (Fig. 6c), again based on root-
transformed data, is less successful in separating the
groups and presenting a clear signal of change and
partial recovery. It is dominated almost completely by
the sample totals, which are larger and more variable (in
absolute terms) for replicates from 1981 than the low
values of 1983, the latter points therefore collapsing
onto each other.

Contrasting MDS patterns based on two further
dissimilarity measures can also be seen in Fig. 6. In
order to be strictly comparable, both are again calculated
from root-transformed data arrays. The first uses the
Kulczynski measure (Fig. 6d). Compared with the
standard Bray–Curtis analysis (Fig. 6a) the Kulczynski
coefficient is clearly less successful in separating the
years, particularly the 1981 samples, which generally
can be distinguished with the other coefficients. Fig. 6e
shows the effect of a different coefficient, χ2 distance:

Dv2dist
12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
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yij; ð7Þ

which is commonly encountered as it is the distance
measure implicitly underlying correspondence analysis
and its derivatives (Detrended Correspondence Analy-
sis, Canonical Correspondence Analysis, etc., see Ter
Braak, 1986). This coefficient is derived essentially
from a (discrete) multinomial model for the entries in the
species by samples matrix, and a set of guidelines
motivating its use would therefore include a restriction
to counts behaving as genuine frequencies (arrivals of
individuals of a species into the sample being
independent of each other, and of other species;
irrelevance of marginal totals to interpretation etc.).
These assumptions are poor for the continuous variables
of percentage cover in this study, as is seen from the
failure of Fig. 6e to capture much meaningful structure
(and three outlying replicates from 1983 have been
removed for the MDS to get even this far). In many
ways it is the exact converse of the Euclidean distance
ordination, with the 1981 replicates, and those from
1985 and 1987, condensing into the middle of the
ordination plot, whereas the relatively denuded samples
from 1983 and, to some extent, 1984 are widely
scattered. An important distinction between the two
measures is that whilst Euclidean distance tends to be
dominated by differences in sample totals (as remarked
for Fig. 6c), χ2 distance removes the effect of
differences in total cover altogether by standardising
each yij value by its sample total∑i yij. Thus, χ

2 distance
reverses the dependence on totals guideline; it also fails
to fulfill complementarity and localisation. Another
problem, in complete contrast to Euclidean distance, is
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that small entries can be troublesome. Eq. (7) shows
why: there is a denominator term within the outer
summation that is the sum over all samples for each
species, denoted yi+. Rare species, accounting for very
little cover across all samples, will give values close to
zero for this denominator, potentially causing instability
in the coefficient. Here, the problem is exacerbated by
the continuous nature of the percentage cover values,
recorded down to 0.1%. It is this instability to rare
species and (to a much smaller extent) the enforced
sample standardisation that makes the ordination for χ2

distance totally different, and equally unhelpful, from
that based on Euclidean distance. Bray–Curtis on
unstandardised data, in contrast, can be thought of as
intermediate in its use of sample totals, producing a mix
of relative compositional information, in which pres-
ence/absence structure plays a definite role (especially
under strong transformation), with a modest contribu-
tion from the total (transformed) cover values. That the
latter is not dominant can be seen by an analysis using
(adjusted) Bray–Curtis on sample-standardised data,
giving an MDS intermediate between Fig. 6a and b (not
shown).

All of the plots in Fig. 6 have high stress values, and
the conclusions above about relative visual separations
of year groups should be treated with caution, until
examined more formally by hypothesis tests. Non-
parametric ANOSIM tests are not compromised by the
approximations necessary to view a 2-dimensional
ordination pattern, since they take place in the full
high-dimensional space of the (rank) dissimilarity
matrices. The ANOSIM R statistics for the global tests
of ‘no difference between any years’ are displayed in the
bottom left corner of the plots in Fig. 6. They match the
visual impressions given by the plots, in spite of the high
stress values for the latter. Pairwise R values for the test
of 1981 v 1983 are also given (all displayed R values are
significant at least at the 0.1% level), and make the point
even more clearly: the zero-adjusted Bray–Curtis
dissimilarity is the most effective by far of the
coefficients considered for this data, with R13=0.87.
(The adjusted Bray–Curtis analysis on standardised,
then root-transformed data gives R=0.37, R13=0.56,
but standardisation does not seem biologically appro-
priate here, since loss of total coral cover could be an
important consequence of the El Niño event).

From this example, a final point needs to be made
about the Bray–Curtis adjustment. Since the entries are
continuous values, not discrete counts, the lowest non-
zero entry is not 1, and, as commented in the Methods
section, other choices for the dummy species value
might be considered. Experience demonstrates, howev-
er, that such choices make rather little difference, even
here where the data contain several sparse samples. This
is illustrated by examining the final plot in the se-
quence, Fig. 6f, which uses a zero-adjusted Bray–Curtis
coefficient based only on the presence/absence of coral
taxa (i.e. 1's and 0's in place of % cover). For presence/
absence (P/A) data, Bray–Curtis reduces to the
Sørensen (1948), or Dice (1945) dissimilarity:

DSor
12 ¼ 100d

bþ c
2aþ bþ c

; ð8Þ

where a is the number of species which are found in
both samples 1 and 2; b denotes the number found in
sample 1 but not sample 2; and c the number in sample
2 but not sample 1. Adding a dummy species with a
value of 1 for all samples is the only natural choice here
since it is a P/A matrix, and this gives the zero-adjusted
Sørensen dissimilarity:

DSoradj
12 ¼ 100d

bþ c
2þ ð2aþ bþ cÞ : ð9Þ

The MDS plot using this coefficient (Fig. 6f) would be
exactly the same, whatever quantitative value we had
chosen for the dummy species, prior to the P/A
transformation. Furthermore, the outcome looks remark-
ably similar to Fig. 6b, based on the mildly (square-root)
transformed quantitative data. The ANOSIM R value,
e.g. for the 1981 to 1983 difference, remains large
(R13=0.83), as is also the case for the other extreme, of
no transformation (MDS not shown, R13=0.88), dem-
onstrating both the efficacy and relative robustness of a
Bray–Curtis analysis in this case, when some form of
adjustment is made for near-blank samples.

Example 4. Oilfield macrofauna, Norway

Fortunately, the alarmingly disparate plots of Fig. 6,
when radically different dissimilarity measures are
employed, are not typical of all data sets. Sometimes
conclusions are robust to a wide choice of coefficients.
In particular, the effect of the zero-adjustment to Bray–
Curtis should be entirely negligible in cases where there
are no genuinely impoverished samples. In a commonly
cited study of an oilfield impact gradient on soft-
sediment macrobenthos (the Ekofisk oilfield, Gray et al.,
1990) there are no near-empty samples, the clear impact
for the 4 sites within 100 m of drilling operations being
expressed as a rise in numbers of certain opportunist
species, as well as a decline in numbers of more
vulnerable taxa. Samples (along 5 radial transects) are
grouped into distance classes, A: N3.5 km; B: 3.5–1 km;
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Fig. 7. Macrobenthic assemblages from the Ekofisk oilfield, Norwegian sector of the N Sea. MDS plots for square-root transformed species counts, of 174 species from 39 sites on 5 transects outwards
from the oilfield centre. The sites were categorised, a priori, into four distance groups (D: b250 m from the centre, C: 250 m–1 km, B: 1– 3.5 km, A: N3.5 km). The ordinations used coefficients:
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dissimilarities to a model distance matrix reflecting the ordered group structure A to D: ρ=1 implies perfect serial change of communities with distance from the centre; ρ=0 implies no serial
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C: 1–0.25 km; D:b0.25 km. Fig. 7 shows MDS plots
based on the following coefficients: standard Bray–
Curtis (Eq. (1)); its zero-adjusted form (Eq. (4)); the
Stephenson et al. (1972) form of Canberra dissimilarity,
defined as

DCan
12 ¼ 100

p12

X
i

jyi1 � yi2j
ðyi1 þ yi2Þ ; ð10Þ

where joint absences are excluded and p12 is the number
of species present in either samples 1 or 2 (or both);
Euclidean distance (Eq. (6)); Manhattan distance,
defined as

DMan
12 ¼

X
i
jyi1 � yi2j; ð11Þ

and χ2 distance (Eq. (7)). The MDS for Kulczinski (Eq.
(5)) is not shown because it is totally indistinguishable
from the standard Bray–Curtis plot of Fig. 7a. The
Canberra dissimilarity is included here as a further
example of a fairly widely used ‘biological’ coefficient,
which obeys all the guidelines of the Introduction and
can thus be considered another member of the Bray–
Curtis family. Manhattan distance is more akin to the
Euclidean distance measure (contravening the same
guidelines), though with the potential advantage of
being less prone to distortion by outliers since it operates
with absolute differences not squared differences.
Analyses for all coefficients use square-root transformed
species abundances.

In quantifying the success of different coefficients in
delineating the impact gradient, the ANOSIM R statistic
is less appropriate than in the previous example. It tests
only for unordered differences between groups, whereas
the optimum model to test here is of serial change:
groups A and D are further apart than groups A and C, or
B and D, which in turn are further apart than groups A
and B, B and C, or C and D. Such serial change is better
expressed in a ‘seriation with replication’ statistic ρ, a
Spearman rank correlation between the biotic dissi-
milarities and a model distance matrix reflecting the
ordering of the distance groups away from the oilfield
(Somerfield et al., 2002). A permutation procedure is
used to test the significance of ρ, essentially a non-
parametric Mantel (1967)-type test, and again because
of the non-parametric formulation, values of ρ are
absolutely comparable between the different coefficient
choices. (Note that the choice of ANOSIM R or seriation
ρ parallels that in univariate statistics, between 1-way
ANOVA and linear regression with replication.)

The MDS ordinations (Fig. 7), and the accompa-
nying ρ statistics, show firstly, and reassuringly, that the
dummy species adjustment makes no difference what-
soever to the Bray–Curtis analysis. Secondly, the other
coefficients also give rise to a broadly similar picture,
with a clear pattern in most cases of assemblage change
moving out from the oilfield centre. The Canberra
dissimilarity is nearly as successful as Bray–Curtis in
distinguishing the distance groups, though less satisfy-
ingly linear (Fig. 7c). Its greater stress can be attributed to
the equal weighting given to rarer and common species
by the move inside the summation of the denominator
term (yi1+yi2). Species i values of 0 and 1, for the two
samples, now give exactly the same dissimilarity
contribution as species i values of 0 and 100, so that
rare species which, almost by definition, have a low
‘signal-to-noise ratio’ can be given too much impor-
tance. Although the Euclidean-distance plot (Fig. 7d) has
a tendency to be dominated by the larger variation among
replicates close to the oilfield centre, it too captures the
key distinction between sites as far out as 3.5 km and
those beyond — the division between B and A labels.
Manhattan distance gives a configuration somewhat
intermediate between Euclidean distance and Canberra
dissimilarity (Fig. 7e). The only disappointing plot,
showing a much less clear delineation of the gradient, is
that for χ2 distance (Fig. 7f; it was also necessary in this
case to remove one of the D samples, closest to the
oilfield centre, to avoid a collapsed MDS plot).

The reason that most of these coefficients show
similar patterns in this example is the short baseline of
community change, in terms of turnover of species. The
species found at opposite ends of the gradient are not
entirely different, and the abundance matrix cannot be
made to ‘block diagonalise’ (i.e. with non-zero entries
all close to the diagonal) when samples are ordered by
increasing distance from the oilfield. In fact, on a casual
visual inspection of the original data matrix, it is hard to
see much structure at all. Many species occur across all
samples, and the assemblage gradient is characterised as
much by changes in density of ubiquitous species as by
species deletions and accessions (though both types of
change are present). Guidelines such as complementar-
ity, independence of joint absences, and dependence on
totals become less biologically important over a short
baseline of change.

Example 5. Sludge disposal site macrofauna, Scotland

In complete contrast, the final example considers a
long baseline of community change, in another classic
impact gradient study. The data are abundances of 84
benthic macrofauna species in 12 samples (labelled 1 to
12) taken along a single E–W transect at Garroch Head,
Firth of Clyde, Scotland (Pearson and Blackstock,
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1984). Site 6 is at the centre of a sewage-sludge disposal
site, and sites 1 and 12 are furthest from the centre. In a
meta-analysis by Warwick and Clarke (1993), on studies
of sub-tidal soft-sediment macrobenthos subject to
disturbance by organic enrichment, this was considered
to encompass the widest impact range, and species
turnover from one end of the gradient to the other is
complete. MDS plots based on 4th-root transformed
counts in the 12 samples, for Bray–Curtis and its zero-
adjusted form (Fig. 8a, b), are again indistinguishable.
Although the central site is heavily organically enriched
(and metal contaminated) it is not defaunated, as there
are large numbers of a few species of opportunists (e.g.
Capitella capitata). There is no necessity for a ‘near
zero’ adjustment to the behaviour of Bray–Curtis
because no samples are sparse, so the inclusion of the
dummy species is simply irrelevant, and is seen not to
affect the standard Bray–Curtis plot in any way.

The remaining plots in Fig. 8 make another inte-
resting point. The main feature of Fig. 8a (and b) is the
clear progression towards the disposal-site (samples 1 to
6), and the retrogression back to the starting point
(samples 7 to 12). The latter is perhaps along a slightly
different trajectory but, nonetheless, samples at opposite
ends of the transect (1 and 12) have very similar
biological communities, and the mid-point sample (6)
has a very different community.

There is something of a curve in this gradient, as is
often found with assemblages driven by strong single
gradients (commonly referred to as the ‘arch’ or
‘horseshoe’ effect), but the pattern is unmistakable.
Contrast this with the MDS based on Euclidean distance
(Fig. 8c). The arch effect now appears so pronounced
that the mid-point, sample 6, is located close to the end-
point samples, 1 and 12. The stress is relatively low
here, so this is not an artefact of representing
multivariate relationships in low-dimensional space, it
is a genuine reflection of the high similarity that the
Euclidean coefficient gives to sites 1 and 6, and sites 6
and 12. This makes no sort of biological sense, as sites 6
and 12 have no species in common at all. What is in
common between them is that samples are sparser, both
in terms of total numbers and species richness, at the
ends of the transect and in the middle of the disposal-
site, than at sites adjacent to the disposal centre. This is,
arguably, the intermediate disturbance hypothesis (Con-
nell, 1978) in action, and its effect here is to confound an
analysis based on Euclidean distance.

The primary reason for Euclidean distance failing to
capture the biological reality in this case is that it flouts
complementarity in a major way. This is best illustrated
by what is known as Orloci's paradox (Orloci, 1978). In
Table 3, consider the top-left array of counts of three
species 1, 2, 3 in three samples A, B, C. Biologically, A
must be considered more similar to C than either of them
is to B (they have no species in common with B). Yet,
Euclidean distance (Eq. (6)) clearly reverses this order,
ascribing greater similarity to A and B (distance √75)
than A and C (distance √200). Bray–Curtis, on the other
hand, returns the more natural order, biologically
speaking, of 100% dissimilarity for A and B (and B
and C) but only 50% for A and C. Zero-adjusted Bray–
Curtis, in its efforts to define dissimilarity between two
all-blank samples, must contravene the complementarity
guideline, returning 88% for the dissimilarity between A
and B, and 95% for B and C. However, A and C still
have a dissimilarity of 48%, retaining essentially the
same relationships as for standard Bray–Curtis and only
departing mildly from complementarity.

Inevitably, it is possible to find situations where the
adjusted Bray–Curtis measure fails complementarity in
the same way as Euclidean distance does (two samples
with no species in common becoming more similar than
two samples that share a common species). The top-
right array in Table 3, for example, gives adjusted Bray–
Curtis dissimilarities of 50% for A and B but 88% for A
and C. However, this can only happen for low counts, as
in samples A and B, and it is at this point that the
complementarity guideline begins to look less appeal-
ing. Multiply the counts in the right-hand array by 15,
without altering the dummy species value of 1, and the
rank order of the adjusted coefficients (×15DB–Cadj

column in Table 3) is restored to that of standard Bray–
Curtis. This indicates that the zero-adjusted Bray–Curtis
measure must also disobey relative invariance; if it did
not, for low abundance samples, then its purpose would
not be achievable. When samples A and B only contain
one individual each, we might be happy to interpret
them as from similarly impoverished communities,
displaying a natural degree of sampling fluctuation,
and thus having greater similarity than A and C. Replace
each individual by 15, for all three samples, and we
might justifiably take the opposite view: A and B should
be less similar than A and C. This is precisely the
distinction achieved by the adjusted Bray–Curtis
coefficient: denuded samples can be deemed rather
similar even when they have no species in common,
samples with more data cannot.

The message of this digression, for the real data
matrix from the Clyde samples, is that the adjusted
Bray–Curtis coefficient is only likely to fall outside the
‘envelope’ of the Bray–Curtis family, defined by the
guidelines of the Introduction, in extreme cases with
many denuded samples (such as the boulder-field data
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Table 3
Hypothetical data on abundances of 3 species (1, 2, 3) in two sets of 3 samples (A, B, C) with, below, values of Euclidean distance (DEuc), Bray–
Curtis dissimilarity (DB–C), and zero-adjusted Bray–Curtis dissimilarity (DB–Cadj) between pairs of samples in each array

A B C A B C

Sp 1 0 5 0 Sp 1 0 1 0
Sp 2 5 0 15 Sp 2 1 0 15
Sp 3 5 0 15 Sp 3 0 0 15

DEuc DB–C DB–Cadj DB−Cadj ×15DB–Cadj DB–C

A v B 8.7 100 88.2 A v B 50 93.8 100
A v C 14.1 50 47.6 A v C 87.9 93.1 93.5
B v C 21.8 100 94.6 B v C 93.9 99.6 100

Also given for the right-hand set is the adjusted Bray–Curtis dissimilarity when the counts in the array above have been multiplied by a factor of 15
(×15DB–Cadj).
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of Example 2). Where even modest amounts of data are
available for most samples, its behaviour will track other
Bray–Curtis type coefficients very closely. Euclidean
distance, on the other hand, is always outside this
‘envelope’, obeying entirely different criteria in which
complementarity is deemed disadvantageous (e.g.
explicitly in Cao et al., 1997; implicitly in Warton and
Hudson, 2004). It is, however, undeniable that in the
context of a longish baseline of species turnover, the
failure to obey complementarity leads to the conflict
seen in Fig. 8a (or b) and c, and the misleading
representation, in the Euclidean distance plot, of the
monotonic gradient of assemblage change as the centre
of the disposal site is approached.

Euclidean distance is, as previously mentioned, the
implicit dissimilarity measure underlying Principal
Components Analysis and a PCA of this data looks
very like Fig. 8c. The practical difference between a
non-metric MDS and a PCA ordination greatly
diminishes when both use effectively the same
dissimilarity measure, especially (as here) when there
are a small number of samples which fit relatively
comfortably into low-dimensional space (stress=0.06
for Fig. 8c). This is covariance-based PCA, so called,
because Euclidean distances are calculated on the
(transformed) common scale of measurement for all
variables (=species), namely the dimensionless scale
of counts. More common is correlation-based PCA, in
which the variables are first normalised prior to
distance calculation (but after transformation, if any).
The equivalent MDS ordination would therefore use
normalised Euclidean distance as its dissimilarity
coefficient (Fig. 8d). Normalisation involves subtract-
ing the mean and dividing by the standard deviation of
each species, taken across all samples. This contra-
venes the localisation guideline, since the introduction
of further samples would then potentially change the
mean and standard deviation used in this normalising
step. This is not a minor violation if the additional
samples come from an environment where a particular
species is much more abundant than elsewhere in the
matrix. Fig. 8d, however, demonstrates that the
flouting of yet another guideline is a price not worth
paying in this instance, as the problems inherent in
Fig. 8c are not corrected by normalisation, but are
exacerbated. The mid-transect sites 7 and 8 are now
drawn close to the transect end-points, 1, 11 and 12, and
the pattern of monotonic response to the gradient is
almost entirely lost. Normalising is commonplace with a
Euclidean distance analysis, but this is usually forced by
the variables being on different measurement scales, so
there is little alternative to giving them potentially equal
weight. After normalisation the units are the common,
dimensionless, units of standard deviation about the
mean. Normalisation is not required for assemblage
matrices because they are generally on a common scale
across species (counts, biomass, area cover etc.), and it
is usually counter-productive because it gives exactly
the same weight to rare as common species and thus
increases the ratio of ‘noise’ to ‘signal’.

The final two plots in Fig. 8 show the effects of two
alternative ways, sometimes advocated, of giving
species potentially equal weight. The simple form of
Gower's coefficient (Gower, 1971):

DGow
12 ¼ 1

p

X
i

jyi1 � yi2j
Ri

;

Ri ¼ max
j
ðyijÞ �min

j
ðyijÞ; ð12Þ

divides each value yij by the full range of values for that
species across all samples, before calculating absolute
distances. In practice, this corresponds to a species
standardisation of the matrix by the species maxima
(since the minima are typically zero) before application
of Manhattan distance. In addition to Gower's
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coefficient, another recommendation by Gower and
Legendre (1986) for use in ordination is the original
form of the Canberra metric (Lance and Williams,
1967):

DCanMet
12 ¼

X
i

jyi1 � yi2j
ðyi1 þ yi2Þ ð13Þ

which differs from Canberra dissimilarity (Eq. (10)),
importantly, in respect of the latter's division by the
variable factor p12, the number of non-jointly absent
species in samples 1 and 2. The standardisation inherent
in the Canberra metric is able to satisfy the localisation
guideline (which Gower does not) but neither coeffi-
cient obeys independence of joint absence or comple-
mentarity. As a consequence, they too fail in this case to
capture the biological reality of the impact gradient for
the Clyde samples (Fig. 8e,f).
4. Discussion

4.1. Previous recommendations on coefficient choice

Several authors have compared sets of resemblance
measures, in order to choose those with ‘optimal’
performance. Mostly, optimality has been judged as
success in analysing artificially constructed test data sets.
For example, Kulczynski's coefficient (Eq. (5)) was
identified by Faith et al. (1987) as the best performer,
marginally preferable to Bray–Curtis, in reconstructing a
simulated 2-dimensional ecological gradient, based on a
model of homoscedastic Gaussian curves for the species
counts. Hajdu (1981) constructed ‘ordered comparison
case series’ (OCCAS) which were simple, two species,
test cases, involving linear increases or decreases in
species responses. Gower and Legendre (1986) used
Hadju's OCCAS to demonstrate that the best coefficients
for linear ordination were Gower's coefficient (Eq. (12))
and the Canberra metric (Eq. (13)). Another commonly
invoked criterion is that of using distance measures
which possess metric behaviour, defined as the distance
between samples 1 and 3 always being greater than, or
equal to, the sum of the distances between samples 1 and
2, and samples 2 and 3 (the ‘triangle inequality’). That is,
the measure behaves like a genuine distance in some
high-dimensional space.

None of the above artificial test cases, criteria or
recommendations seem particularly convincing in the
practical cases studied here. Firstly, the Kulczynski
coefficient is seen to obey the same set of motivating
guidelines as Bray–Curtis and very often gives an
indistinguishable analysis, the two coefficients being
close to monotonicity (i.e. placing dissimilarities in the
same order), as Legendre and Legendre (1998) point
out. Its functional form (Eq. (5)) shows that it can only
return a different order if some samples are highly
impoverished relative to others, because only then can
there be a substantial difference between the arithmetic
and harmonic averages of the two sample totals in the
denominators of these coefficients. In Bray–Curtis,
which uses an arithmetic mean, there will only be
instability if both totals are close to zero. With
Kulczynski, the harmonic mean in the denominator
will be near zero if either sample total is near zero,
which implies that Kulczynski will have a slightly
greater tendency to instability than Bray–Curtis. There
is some evidence for this in the Tikus corals example
(Fig. 6a and d), which does have substantial variation in
the degree of sparseness of samples.

Secondly, the recommendation given by Legendre
and Legendre (1998), to use either the original forms of
the Gower coefficient (Eq. (12)) or the Canberra metric
(Eq. (13)) for linear ordination, is seen to be sub-optimal
for the practical contexts considered here. Both
measures contravene most of the initial guidelines and
fail to capture the strongly ‘linear’ impact gradient with
distance from the disposal centre, in the Clyde study.
‘Linear’ is an over-used word in statistics generally. The
‘linear ordination’ of Gower and Legendre (1986) refers
to a strict linear relationship between the original
measurement scale (species counts) and the final
ordination. This is an unrealistic model for the effect
of the impact gradient here, since this has more to do
with patterns of species turnover (presence/absence
structure) than linear trends in abundance over a short
baseline of change.

Thirdly, the requirement for coefficients to behave as
strict metrics is not a guideline that it would be helpful to
add to the set in the Introduction. It arises as a
requirement in Principal Co-ordinates Analysis, if
negative eigenvalues are to be avoided for some of the
axes (PCoA, Gower, 1966). This is not a constraint on
PCoA/metric scaling in modern practice, however, since
several authors have used semi-metrics (such as Bray–
Curtis) effectively, not only to display low-d PCoA
ordinations but also to construct ANOVA-type general-
isations in the mix of real and imaginary high-d space
that semi-metric resemblance matrices lead to (see the
major contribution by McArdle and Anderson, 2001). A
simpler observation is that metric property is clearly
irrelevant to the widely employed non-parametric
strategy of MDS ordination and ANOSIM permutation
tests, because the rank order of dissimilarities (which is
all ANOSIM depends on) can be identical for two
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resemblance measures, one of which is metric and the
other not. An example is Euclidean distance (a metric,
naturally) and the square of Euclidean distance:

DEuc2
12 ¼

X
i
ðyi1 � yi2Þ2 ð14Þ

which is not a metric, but clearly gives resemblances in
the same rank order as Euclidean distance itself.

A plethora of resemblance measures have been
defined or applied in the ecological literature (Legendre
and Legendre, 1998, provide a long, but not exhaustive
list), in part because it is easy to invent and motivate new
ones. For example, the Kulczynski dissimilarity (Eq. (5))
applies to fully quantitative data but, for the special case
of presence/absence (P/A) lists only, it reduces to:

DKulPA
12 ¼ 100d 1� a

HMðaþ b; aþ cÞ
� �

: ð15Þ

This uses the notation of Eq. (8), which gives the
analogue of the Bray–Curtis coefficient in the P/A case
(Sorensen), and the definition of the harmonic mean HM
from Eq. (5), the quantitative Kulczynski coefficient.
Another P/A coefficient of the same type is due to
Ochiai (1957):

DOch
12 ¼ 100d 1� affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ bÞðaþ cÞp

 !
; ð16Þ

and this will give analyses which are, in some sense,
intermediate between those of Sorensen and Kulczynski
P/A. This is because it replaces the arithmetic mean of
the sample totals, in the Sorensen coefficient, with a
geometric mean, whereas Kulczynski (Eq. (15)) uses the
harmonic mean in the same place, as previously noted.
A geometric mean is intermediate between an arithmetic
and a harmonic mean. There does, however, appear to
be no reference in the literature to a quantitative form of
Ochiai, which is naturally defined as:

DB�CðGMÞ
12 ¼ 100 1�

X
i
min yi1; yi2f gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
yi1
X

i
yi2

q
0
B@

1
CA ð17Þ

i.e. a ‘geometric Bray–Curtis’, with a geometric mean
divisor replacing the arithmetic mean of the sample totals.
This satisfies all the guidelines of the Introduction and is
therefore another member of the Bray–Curtis family: its
behaviour will be intermediate between that of the
quantitative Bray–Curtis and Kulczynski coefficients.

The ease with which new coefficients can be written
down highlights the necessity of a disciplined approach
to their assessment. We have so far suggested two ways
of predicting the likely distinctiveness and behaviour of
any newly defined coefficient, namely, referring it to the
guidelines of the Introduction, and deducing its
performance from the similarity of its functional form
to an existing coefficient, whose behaviour in particular
contexts is better understood. There is a limit, though, to
how far algebraic inspection can be used to predict the
likely performance of a coefficient. What is needed here
is an effective means of assessing whether any newly
defined measure contributes essentially different infor-
mation than any of the existing canon, and which, if any,
of the known coefficients it most closely resembles.

4.2. Comparing coefficients with 2nd-stage MDS plots

A simple means of comparing a number of different
coefficients, for any one study, is to derive MDS
ordination plots of the among-sample resemblances, as
in Figs. 5–8, and to compare the resulting patterns. This,
however, is at best a subjective means of comparison, as
any ordination is only a low-dimensional (usually 2-
dimensional) representation of the true high-dimensional
relationships amongst the samples. Faced with the
problem of comparing large numbers of ordination
plots derived from one set of abundance data, Somerfield
and Clarke (1995) introduced the concept of ‘second-
stage’ MDS. This has since been used effectively (e.g.
Kendall and Widdicombe, 1999; Olsgard et al., 1997,
1998; Olsgard and Somerfield, 2000) to understand the
consequences for the resulting ordinations of changing
the prior transformation applied to the raw data matrix,
and/or identifying the taxa to coarser taxonomic levels
than species (i.e. pooling some variables). It has also
been used to identify which faunal groups best reflect the
multivariate pattern seen in an environmental variable
matrix, defining an impact gradient for example. Here,
we use the same idea to inter-relate competing defini-
tions of resemblance.

A second-stage MDS can be thought of as an
ordination of ordinations, or to be more precise, an
ordination of the relationships amongst the resemblance
matrices that underlie each of the (first-stage) ordina-
tions. Here, a number of among-sample resemblance
matrices are derived from the same set of abundances,
using different resemblance coefficients. A measure of
(second-stage) resemblance is then calculated between
the different (first-stage) resemblance matrices, which is
then used to create the second-stage MDS ordination.
The second-stage resemblance measure of choice
(Somerfield and Clarke, 1995; Clarke and Warwick,
2001) is simply a Spearman rank correlation ρ,
calculated pairwise between corresponding elements in
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each of the resemblance matrices. The use of a rank
correlation allows for the different (and not necessarily
linearly related) measurement scales for differing
coefficients, and its application to the elements of the
resemblance matrices ensures that the inter-comparisons
of coefficients are carried out in full high-dimensional
space, not in the low-dimensional approximations of
respective ordination plots. A large value of ρ implies
that two coefficients are behaving in the same way, a
small value implies that multivariate analyses from the
two coefficients will differ. A negative value only
happens in extreme cases, but implies that analyses
differ still further, to the point of being contradictory (for
example, the matrices underlying Fig. 6c and e give ρ=
−0.22). If necessary, it would therefore be appropriate to
turn Spearman ρ into a strict similarity measure by a
simple location shift to ensure it is always positive
(similarity=100(1+ρ) /2 puts it into the range 0 to 100).

Fig. 9 gives second-stage MDS plots for the four
main comparative studies presented above, for which
the corresponding first-stage MDS plots are in Figs. 5–
8. The latter, however, contain ordinations for only a
selection of coefficients, whereas second-stage plots
allow direct comparison of most of the measures in this
paper. Note, though, that the taxonomic dissimilarities
of Eqs. (2) and (3) were excluded because taxonomic
hierarchies were not available for most of these studies,
and it is important for the comparative interpretation of
the second-stage plots to use the same set of coefficients
throughout. (In fact, experience with other studies bears
out the previous suggestion that Γ + and Θ+ will track
each other closely unless sample totals very widely, with
some approaching zero, and they also demonstrate their
genesis from the Bray–Curtis family, being general-
isations of the Sørenson and Kulczynski presence/
absence measures.) Any all-blank samples have also had
to be deleted for Fig. 9, so that the standard coefficients
are defined for all samples. The 13 coefficients that are
displayed cover the full set of equations defined here,
excluding: Euclidean distance squared (Eq. (14)), which
(by definition) falls on top of Euclidean distance; Ochiai
(Eq. (16)) which falls between Sorensen and Kulczynski
P/A; and ‘geometric Bray–Curtis’ (quantitative Ochiai,
Eq. (17)), which falls between Bray–Curtis and
quantitative Kulczynski, as predicted. Added to the set
is a repeat of Euclidean distance (Eq. (6)) but with a
prior normalisation of the data matrix. It should be noted
here also that we have not included the popular Jaccard
P/A dissimilarity, defined as:

DJac
12 ¼ 100d

bþ c
aþ bþ c

; ð18Þ
because it is strictly monotonic with Sørensen (Eq. (8)),
i.e. it places the among-sample dissimilarities in the
same rank order, so the point for Jaccard in Fig. 9 would
always be coincident with that for Sørensen. Note that
Jaccard is another member of the ‘Bray–Curtis family’
because it is simply the P/A form of Canberra
dissimilarity (Eq. (10)).

4.3. Interpreting the 2nd-stage plots for the 4 studies

The second-stage plots of Fig. 9 tell us a great deal
about the relationships between the different coeffi-
cients, and do so accurately (stress is very low in all
cases). Firstly, there is a commonality to the overall
pattern, irrespective of the particular study. Thus,
Euclidean distance and χ2 distance tend to be polarised,
usually reflecting the greatest difference in analysis
outcomes of any two measures. They contravene
different combinations of the introductory guidelines,
but the key distinction is that whilst Euclidean distance
is unstandardised, so that less-abundant species contrib-
ute rather little, χ2 distance is doubly standardised, with
abundances first divided by sample totals across species
and then the resulting squared differences divided by
species totals across samples, so that less-abundant
species are upweighted, to some extent. Both of these
standardisations have a major impact, as can be seen
from the location on the plot of the normalised
Euclidean measure, which includes a standardisation
(by species standard deviation across samples). This is
always well removed in Fig. 9 from the non-normalised
Euclidean matrix but also from χ2 distance. Gower and
the Canberra metric standardise in different ways.
Gower divides by the range of abundances for each
species across all samples. Canberra is more locally
standardised, with division by the sum of abundances
for that species across only the two samples being
compared. Nonetheless, the Gower, Canberra metric and
normalised Euclidean coefficients all do have a
standardisation or normalisation of species, potentially
giving all species equal weight, and this clearly drives a
common behaviour.

Manhattan distance is always seen to be intermediate
between this group and (non-normalised) Euclidean
distance. It shares an absence of standardisation with
Euclidean distance but it shares a numerator of absolute
differences, rather than squared differences, with Gower
and the Canberra metric. The absolute differences in
Manhattan should generally provide a greater robustness
to outliers than the squared differences in Euclidean
distance. The main, common distinction in the plots of
Fig. 9, however, is between these distance coefficients
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and the (generally tighter) group of dissimilarities
termed the Bray–Curtis family: Bray–Curtis, Kulc-
zynski, Canberra dissimilarity (and quantitative Ochiai)
and their P/A forms (Sørensen, Kulczynski P/A, Jaccard
and Ochiai, respectively). The key unifying element
here is the way these all satisfy the introductory
guidelines, in particular the independence of joint
absence and complementarity criteria, at least one of
which all other coefficients in Fig. 9 contravene. As
previously noted, the zero-adjusted forms of Bray–
Curtis and Sørensen also fall within the ambit of the
Bray–Curtis family in nearly all cases, since they only
mildly contravene the guidelines, and then only for
extremely sparse sample sets such as the boulder-field
data of Fig. 9a.

Turning to differences in the plots of Fig. 9, rather
than their common features, it is clear that switching
resemblance measures has greater consequences for
some data matrices than others. The least polarised of the
four plots is that for the Ekofisk study (Fig. 9c), in which
the differing coefficients were seen, in Fig. 7, not to
influence the conclusions greatly (with the possible
exception of χ2 distance). The baseline of assemblage
change is short here, with effects on the communities
being rather subtle, outside the four or five sites within
two hundred metres of the oil-drilling activity. Thus,
relative to smaller overall changes resulting from the
different coefficients, the differences caused by trans-
formation choices (prior to resemblance computation)
are accentuated. Quantitative Bray–Curtis, based on
mildly transformed data (square root), separates from
Sørensen, which is Bray–Curtis on severely transformed
data (reduced to presence/absence); 4th-root and log
transformations would give points intermediate between
these two. This is roughly the position occupied by the
Canberra dissimilarity (Eq. (10)), which is seen to fall
marginally closer to Sørensen than Bray–Curtis on most
of the plots. This could have been anticipated: Canberra
dissimilarity makes the important modification to the
Canberra metric (Eq. (13)) of removing its dependence
on joint absences, and Fig. 9 shows that this radically
alters its behaviour. It now satisfies all the guidelines in
the Introduction, but the local standardisation based on
the sum of the two species abundances (discussed under
the Canberra metric above) implies that contributions
from common and rarer species are potentially given
equal weight. This, of course, is what a Bray–Curtis P/A
(Sørensen) analysis does, in a slightly different way.
The other feature of note for the Ekofisk plot (Fig. 9c)
is that the points for Bray–Curtis, its zero-adjusted
form and quantitative Kulczynski are coincident, as
they are also (in a shifted location) for the P/A form of
all three. For relatively subtle assemblage changes,
retaining high counts and many species in all samples,
the arithmetic mean/harmonic mean differences in Eqs.
(1) and (5), and the added denominator constant in Eq.
(4) become irrelevant.

The biggest contrast with the Ekofisk second-stage
plot is for the Tikus Island corals data (Fig. 9b). Here,
the differences in first-stage ordinations seen in Fig. 6
could not be more dramatic, and the second-stage plot
collapses into three tight groups. The subsets from two
of these (the third is just χ2 distance) are re-run through
the MDS algorithm, to obtain the sub-plots shown.
These form similar patterns to the other studies, but
because there are now a number of impoverished
samples, with very low total cover, harmonic means of
these totals differ from arithmetic ones. Kulczynski thus
separates from Bray–Curtis, the difference being of
similar magnitude (but orthogonal direction) to that
between root-transformed data and a P/A analysis using
the same coefficient. A comparable difference results
from adding a dummy species to either the quantitative
or P/A form of Bray–Curtis (this zero-adjustment was
seen, objectively, to provide the best analysis for this
data, Fig. 6). In contrast, for the boulder-fauna data of
Fig. 9a, where the sparseness of the counts is also
extreme, the zero-adjustments make the greatest differ-
ence of all, and the different transformations make
virtually no difference to the standard forms of Bray–
Curtis and Kulczynski (and the latter are indistinguish-
able, as they were in Fig. 9c). Finally, Fig. 9d, as with
9c, demonstrates the irrelevance of the zero-adjustment
of Eqs. (4) and (9) in this case, but the Clyde study is one
in which the harmonic mean divisor in the Kulczynski
coefficient does produce a slightly different outcome
from the arithmetic mean divisor in Bray–Curtis,
because the total counts in each sample, though
generally large, are highly variable.

4.4. In conclusion

What Fig. 9 tells us about the importance of coe-
fficient selection, in relation to other analysis choices, is
enlightening. This paper does not primarily address
choice of data transformation because that has been
extensively examined using second-stage MDS else-
where (Somerfield and Clarke, 1995; Olsgard et al.,
1997, 1998). However, the changed outcomes to
analyses resulting from different transformations prior
to computation of two of these coefficients, Bray–Curtis
and Kulczynski, can be judged from Fig. 9. In Fig. 9a,
the two extremes of no transformation and reduction to
presence/absence (P/A) were barely distinguishable. In
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Fig. 9b and c, the transformation ranged nearly as
widely, from square root to P/A, and whilst not of
negligible consequence (especially in the Ekofisk
study), the effect is demonstrably smaller than that of
a change in the coefficient itself. Note that Somerfield
and Clarke (1995) and Olsgard et al. (1997, 1998)
concluded that different transformation choice generally
had a much greater effect on the outcome of a
multivariate community analysis than decisions on
taxonomic level (whether the taxa involved should be
identified to species or only to genus level, family level,
etc.). The inescapable consequence is therefore that the
primary attention should be directed to identifying a
coefficient with the correct properties for the proposed
study, secondarily to a relevant transformation, and only
then to an appropriate level of taxonomic identification.
This is probably in precisely the reverse order to most
current biological practice!

The holistic view provided by a second-stage MDS is
clearly very powerful in this context and one can
envisage it being used to classify, by second-stage
cluster analysis perhaps, an even wider set of resem-
blance measures, thus bringing some order to the
anarchy of choosing from the overwhelming number
of coefficients defined in the literature. An alternative to
clustering would be a more continuous approach, in
which a presence/absence-type matrix of guidelines
obeyed by each measure could be treated as an
associated ‘environmental’ matrix, by analogy with
standard community analysis structures of sample×
sample resemblances (based on species variables) and
matching environment×sample arrays. Here the ‘sam-
ples’ are coefficients, and the ‘environmental variables’
are guidelines—a much wider set than were listed in the
Introduction to this paper of course. The methodology
then exists (e.g. the BIO-ENV procedure of Clarke and
Ainsworth, 1993) to determine which guidelines are the
important ones in determining different behaviour of
coefficients in realistic analyses.

A second-stage MDS, however, like all ordination
procedures, is only comparative. It has the capacity to
tell us which coefficients are essentially behaving in the
same way, and which are capable of taking a different
view of the data; it does not tell us which of these
different behaviours is helpful or unhelpful. The latter is
provided by the hypothesis-based structure of specific
datasets. Which coefficients best separate the pre- and
post-El Niño years in Fig. 6 is determined by the largest
values of the ANOSIM R statistic in testing the coral
community differences for those years. Which coeffi-
cients, in Fig. 7, best delineate the ordered gradient of
assemblage change approaching the Ekofisk oilfield
centre, is determined by the largest values of the
Spearman ρ statistic, rank correlating the community
resemblances with a triangular model matrix corres-
ponding to that ordered change. For the Clyde sewage-
sludge disposal study of Fig. 8, continuous environ-
mental data is available, characterising the impact on the
macrobenthic community from organic enrichment and
heavy metals, so the rank correlation ρ between
community-based and environment-based resemblances
among samples (Clarke and Ainsworth, 1993) can be
optimised, by appropriate choice of coefficient. (Coeffi-
cients from the Bray–Curtis family again do the best job
of matching the assemblage patterns to the strong,
monotonic contaminant gradient approaching the dis-
posal centre.) These three examples span the range of
hypotheses that might be tested, covering categorical,
ordered categorical and continuous change. Together
with the second-stage procedure, they provide the
methodology for a more robust and broadly based
statement on the efficacy of competing resemblance
measures in different ecological contexts. It goes
without saying, of course, that such techniques should
be used to draw out general rules about which contexts
are best served by which measures, rather than adopting
a ‘try it and see’ approach, for each new data set, of
running through 50+ choices of resemblance measure
for the one that best substantiates a desired outcome!

Finally, to return to the starting point of the paper,
Bray–Curtis and related coefficients have a favoured
position in ecological studies largely through ‘received
wisdom’ that they outperform most other measures with
real assemblage data in important practical applications.
The data sets of this paper have provided further
evidence for this. Though clearly not a universal
panacea, the Bray–Curtis coefficient, in its original
form or in one of the variants discussed in this paper –
modified to cater for denuded samples, or to incorporate
higher taxonomic level relationships – has provided, in
these cases, simpler, more interpretable and statistically
significant analyses, in objective tests, than a wide range
of alternatives. To end on a cautionary note, however:
we have demonstrated that the ‘dummy species’
adjustment to Bray–Curtis can improve interpretability
of displays and significance of tests, and where there are
no impoverished samples the modification is irrelevant.
Nonetheless, it would still be unwise to apply this zero-
adjustment unthinkingly, as a cure for all sparse data
problems. It contains an implicit assumption that two
samples which are sparse are similar, because they are
denuded for the same reason. This will not always be the
case. Where samples correspond to replicates at too
small a physical scale to be sure of capturing some
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organisms in each (perhaps because the species are all
heavily clustered in space), then blank replicates could
potentially be found in any or all of the treatments/times/
sites being compared—this is arguably the situation for
the boulder fauna of Fig. 5. It is probably not then
biologically meaningful to define such replicates, in
unrelated groups, as being 100% similar to each other.
Practically speaking also, it would tend to reduce the
global ANOSIM R statistic when testing these groups.
On the other hand, it seems equally undesirable to omit
the blank samples altogether, on the grounds that they
contain no information: a treatment with several such
replicates could reasonably be considered different than
one which leads to substantially fewer blank samples. A
better solution here is to reduce the replicate variability
by taking large enough replicate ‘extents’ (core
diameter, tow length, quadrat size etc.) to ensure that,
for unimpacted conditions, a moderate number of
organisms are always recorded. Impoverished samples
are now an indication of the common impact gradient,
not sampling inadequacies, and can reasonably be
regarded as highly similar. This raises interesting issues
of replication numbers and power in assemblage tests
based on resemblance matrices. Given a large, fixed
number of independent replicates from each of two
groups (a control v impact study, say), and sufficiently
large among-replicate variability to generate blank
samples in both groups, it seems clearly advantageous
to pool the replicates arbitrarily in 2's, 3's, 5's etc. before
applying the 1-way ANOSIM test. Heavier pooling will
give a larger ANOSIM R statistic, though with a smaller
number of replicate pools (and thus permutations) to test
its difference from zero, the hypothesis of no impact
effect. If such a trade-off can be beneficial, that would
make an interesting contrast with the univariate
analogue (the 2-sample t-test), in which such pooling
is not advantageous and not carried out, in general. To
our knowledge, this problem has not been examined,
though there is clearly scope here to derive useful
guidelines for practitioners, on the desirability and
extent of pooling of raw data prior to multivariate
display and testing.
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